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Determining Class Proportions Within a Pixel Using
a New Mixed-Label Analysis Method

Xiaoping Liu, Xia Li, and Xiaohu Zhang

Abstract—Land-cover classification is perhaps one of the most
important applications of remote-sensing data. There are limi-
tations with conventional (hard) classification methods because
mixed pixels are often abundant in remote-sensing images, and
they cannot be appropriately or accurately classified by these
methods. This paper presents a new approach in improving the
classification performance of remote-sensing applications based
on mixed-label analysis (MLA). This MLA model can determine
class proportions within a pixel in producing soft classification
from remote-sensing data. Simulated images and real data sets are
used to illustrate the simplicity and effectiveness of this proposed
approach. Classification accuracy achieved by MLA is compared
with other conventional methods such as linear spectral mixture
models, maximum likelihood, minimum distance, and artificial
neural networks. Experiments have demonstrated that this new
method can generate more accurate land-cover maps, even in the
presence of uncertainties in the form of mixed pixels.

Index Terms—mixed pixels, Mixed-label analysis (MLA), re-
mote sensing, soft classification.

I. INTRODUCTION

R EMOTE SENSING has become an important source of
land use/cover information at a range of spatial and

temporal scales [1]. In the last decade, a variety of classification
algorithms, both parametric and nonparametric, has been devel-
oped to classify remote-sensing data. These methods include
statistical classifiers [2], knowledge-based systems [3], neural
networks [4], and swarm intelligence [5]. One major limitation
of these per-pixel classifiers is that they were developed for the
classification of classes that is considered to be discrete and
mutually exclusive and rely on the assumption that each pixel is
pure [6]. However, such assumptions are often invalid in areas
where the classes exist as continua rather than as a mosaic of
discrete classes. In fact, remote-sensing images, particularly at
coarse spatial resolutions, are commonly dominated by mixed
pixels that contain more than one class on the ground [7]. For
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instance, mixed pixels will occur frequently in the interclass
transition zones. One single pixel may contain more than one
type of geographical object such as trees, grass, water, and
soil. Mixed pixels occur because the pixel size may not be
fine enough to capture the details on the ground necessary
for specific applications [8]. They may also occur where the
ground properties such as vegetation and soil types vary con-
tinuously [9]. These mixed pixels reflect the composite spectral
response of the classes within them [10]. Application of per-
pixel approaches to images dominated with mixed pixels may
result in an erroneous classification. Much attention has been
directed at the development of alternative algorithms to solution
of the mixed-pixel problem in mapping land cover from remote-
sensing images [11], [12]. Alternative algorithms such as linear
mixture modeling and fuzzy or soft classification are mainly
focused on the derivation of estimates of the subpixel class
composition.

The linear spectral mixture model (LSMM) has been widely
used for classification of remote-sensing data to produce soft
classification outputs. It estimates the abundance fractions of
spectral signatures within mixed pixels [13]–[15]. However,
LSMM is based on an unattainable assumption that class
mixing is performed in a linear manner and adopts a least
square procedure to estimate the class proportions within each
pixel [16]. Moreover, the LSMM approach cannot satisfy the
requirement that each class proportion in the analysis result is
within the range (0–1). Another commonly used approach in es-
timating the class composition of pixels for land-cover mapping
applications is the use of a fuzzy classification, which allows
for the multiple and partial class membership properties of
mixed pixels [17]. It has been found that a fuzzy classification
can provide more informative and potentially more accurate
representations of land cover than conventional classification
[18]. The output of such approaches is typically a set of fraction
images, each of which describes some measure of the fractional
cover of a particular land-cover class within each pixel. The
principal limitations associated with fuzzy approaches include
the inherent subjectivity in the derivation of the membership
functions needed to guide classification [19].

Recently, multilabel learning algorithms were proposed to
solve mixed-label problems [20], [21]. In contrast to conven-
tional data classification, where each instance is assigned to
only one label, for multilabel classification, one instance may
be simultaneously relevant to several labels. This approach has
a potential in solving mixed-pixel problems in remote-sensing
classification. Unfortunately, multilabel classification approach
is only capable of identifying the classes of a mixed-label data
but cannot give the class proportions within each pixel.
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Fig. 1. MLA model based on the nonparametric regression algorithm.

This paper proposes a new mixed-label analysis (MLA)
model based on nonparametric regression. The proposed model
mainly aims to solve two problems. First of all, MLA is used to
determine the classes for mixed-label data, which is a question
which multilabel learning approach can also answer in a general
sense. Second, MLA will play an important role in acquiring
class proportions in mixed-label data. The proposed model
should overcome the limitations of conventional classification,
thus becoming an important tool in classifying remote-sensing
images which are dominated by mixed pixels. Simulated image
and real data sets will be used to illustrate the simplicity and
effectiveness of this proposed approach. The remainder of this
paper is organized as follows. A detailed description of MLA
to an analysis of mixed-label data is given in Section II. The
experimental results when using this proposed approach to
produce a soft classification are provided in Section III. Finally,
the discussion of the results and the concluding remarks are
presented in Section IV.

II. MLA MODEL

Let T={(x1, Y1), . . . ,(xi, Yi), . . . ,(xm, Ym)}(xi∈X,Yi∈
Y ) be a sequence of training examples, where xi belongs to
a domain or instance space X and Y is the output space.
Each instance has n attributes [i.e., xi = (a1

i , . . . , a
n
i )]. The

total number of classes (labels) for the training data set is
C; Yi refers to the class proportions [i.e., Yi = (p1

i , . . . , p
C
i ),∑C

c=1 pC
i = 1, where pC

i refers to the cth class proportion in
the ith sample].

The task of the MLA model is to find a function f(x), which
takes as input an instance xi and return the class proportions
in the mixed-label data. In this paper, the k-nearest neighbor
(k-NN) nonparametric regression algorithm is used to construct
this MLA model, and the structure of MLA is shown in Fig. 1.

Numerous forecasting techniques belong to parametric al-
gorithms, which assume that the data to be modeled take on
a structure that can be described by a known mathematical
expression with a few free parameters [22]. Nonparametric re-
gression is an alternative approach that does not make any rigid
assumptions about the data. It is a forecasting technique similar
to case-based reasoning that relies on the data to determine
a relationship between input and output states [23]. One of

these techniques is the k-NN nonparametric regression, which
has been widely applied in pattern recognition and statistical
classification tasks [24].

This proposed MLA is established by using nonparametric
regression as follows:

Ŷ = f(xi) + ui, i = 1, . . . ,m (1)

where f(x) = E(Y |X = x) is a regression function for Y
to X and ui is a stochastic error item. The nonparamet-
ric regression model can give an estimate value f̂m(x)
of the regression function f(x) for a given sample T =
{(x1, Y1), . . . , (xi, Yi) . . . , (xm, Ym)}(xi ∈ X,Yi ∈ Y ); here,
f̂m(x) is generally estimated by using the following:

Ŷ = f̂m(x) =
m∑

i=1

Wi(x, x1, x2, . . . , xm)Yi (2)

where Wi(x, x1, x2, . . . , xm) is a weight function, which is a
measure of the influence or contribution of the sample (xi, Yi)
in estimating f̂m(x). The weight function shall satisfy the
following condition:

Wi(x, x1, x2, . . . , xm)≥0
m∑

i=1

Wi(x, x1, x2, . . . , xm)=1.

(3)

The k-NN method is used to determine the weights of
MLA. The algorithm assumes that the two instances with the
smaller distance are recognized as similar ones, which are
correspondingly taken as the same class (k neighbors) and as
the best match in the training instances. In most classical k-NN
variants, distance measure is calculated by using the Euclidean
distance

di = d(x, xi) =

√√√√
n∑

q=1

(aq
i − aq)2 (4)

where aq
i and aq are the qth features of each vectors and n is

the number of attribute variables. In using a weight function
to estimate f̂m(x), only the influences of k-NNs will be taken
into account. With regard to this k-NN approach, the key lies
in determining the contribution from each nearest neighbor.
Generally, the reciprocal of the distance (1/di) is used to
calculate the weight of each k-NN [25]

Wi(x, x1, x2, . . . , xk) =
1/di

k∑
j=1

1/dj

. (5)

This approach appears to be too simplistic as it assumes a
linear relationship between the weight of the nearest neighbor
and the reciprocal of its distance. Here, a negative-index (NI)
approach is proposed to calculate the weights of k-NNs

Wi(x, x1, x2, . . . , xk) =
a + e−cdi

k∑
j=1

(a + e−cdj )
(6)
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Fig. 2. Simulated image showing urban, forest, water, agriculture, and developing land.

where values for parameters a and c should be determined.
By gradually changing both of the aforementioned parameters
(a, c) in the algorithm and evaluating root mean squared resid-
ual (RMSE) for MLA, the optimal parameter settings can be
searched. The detailed optimization progress will be provided
in the next section.

III. APPLICATION OF MLA IN SIMULATED

AND REMOTE-SENSING DATA

MLA is used to analyze or classify two data sets, simulated
images, and real remote-sensing images. Application to a sim-
ulated data set allows us to examine this method in a controlled
manner, as the actual outputs are known a priori.

A. Simulated Data

The simulated data are preferred in validating MLA because
the actual class proportions of each pixel in the image are
known beforehand. These data are mainly used to verify the
analysis capability of the MLA model in different amounts
of noise environment. In this experiment, the simulated data
correspond to 500× 350 pixel data in five bands comprised of
five assumed land-use classes (urban, forest, water, agriculture,
and developing land) and have digital number (DN) values
ranging from 10 to 255. Urban appears in black, forest appears
in green, water appears in blue, agriculture appears in yellow,
and developing land appears in white [Fig. 2(a)]. Then, spatial
degradation was done by simple averaging of DN values of
4× 4 pixels in the original simulated image, following the
procedure in Maselli et al. [26]. The degraded image, which
is used for the analyses, is shown in Fig. 2(b). Finally, the
proportions of the classes were computed in the degraded
image by simply considering the number of the classes con-
tained in each degraded pixel based on the original simulated
data. The individual class proportion images are also known
as fraction images [Fig. 5(a)]. These images represent actual
class proportions and provide the reference data. However, it
should be noted that this method of synthesizing data sets is
without regard to the so-called point spread function of imaging
devices [27], and the properties of the degraded data were
not equal to those of the data originally acquired at a coarser
spatial resolution [26]. This method of computation of the class

proportions, although not rigorous, is considered adequate for
the illustrations in our experiment.

Generally, the training and testing sample sizes are selected
arbitrarily [16], [28]. It remains a question whether the esti-
mation accuracy would be significantly changed if a different
size of training data is used. This may result in a suboptimal
estimation result when the size of the training data is too small,
whereas it takes a long computation when the size chosen is too
large. We examined the effect of the number of training data
using 12 reference data set sizes. The size of the training data is
varied between 100 and 1200, with increments of 100. A total
of 1500 samples were randomly selected as the testing data.
The training data take the form of Ttraining = {(Bi,Pi)|i =
1, 2, . . . ,m}, where Bi = (b1

i , b
2
i , b

3
i , b

4
i , b

5
i ) is the DN value

vector and Pi is the class proportion vector.
In the k-NN nonparametric regression algorithm, the recip-

rocal distance (RD) is generally used to determine the weight
of each nearest neighbor, but this weight-determining approach
appears to be too simplistic. In this paper, we present an NI
approach to modify the contribution of each nearest neighbor
(weight) based on the determination of two parameters a and
c [refer to (6)]. Here, a and c directly influence the results of
the calculation of the weight Wi and will ultimately affect the
precision of the analysis using MLA. As a result, the key lies in
how to optimize the parameters (a, c) in order to improve the
precision of MLA. To search the optimal parameter settings, we
will gradually modify the values of the parameters (a, c) and
calculate root mean squared residual (RMSE) of MLA. RMSE
is a quadratic scoring rule which measures the average mag-
nitude of the error, and it acts as the performance measure of
classification models in this experiment. When RMSE reaches
its minimum, the values of a and c are selected as the opti-
mal parameter settings for MLA. RMSE of the estimations is
calculated as

RMSE =

√√√√(1/N)
N∑

i=1

(pi − p̂i)2 (7)

where N is the number of estimated and measured values and
pi and p̂ are the measured and estimated class proportions,
respectively. In MLA, the precisions of multiple classes are
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Fig. 3. MLA_RMSE values obtained using different combinations of parame-
ters (a, c) settings (simulated data).

required to be evaluated. Hence, the sum of the RMSE values
of all classes is calculated as the performance measure of MLA

MLA_RMSE =
C∑

NC=1

RMSENC (8)

where C denotes the number of classes and RMSENC is the
RMSE values of the NCth class, which can be calculated by (7).

A greedy search strategy is used to search for the optimal
parameter settings. We assigned values to parameter a from 0 to
1, with increments of 0.01. Parameter c has been varied between
0.1 and 10, with increments of 0.1. Then, MLA_RMSE is
calculated for MLA under different combinations of (a, c).
When MLA_RMSE reaches its minimum, the values of a and c
are considered as the optimal parameter settings. Five retrieved
neighbors are used to avoid too much computation time in
the search procedure. Fig. 3 shows the MLA_RMSE values
obtained using the different combinations of a and c values
with the 800-sample training data set. As shown in Fig. 3,
when a > 0.5, the technique does not seem to be sensitive to
the choice of a; differences along parameter a are relatively
insignificant. It is not very sensitive to the choice of c either,
as long as c > 2 in this case. However, when a and c both
take small values (i.e., a varies between 0 and 0.5 and c varies
between 0 and 2), it is very sensitive to the chosen parameters
a or c. MLA_RMSE is distributed spatially in the form of a
tundish, which corresponds to the area for low MLA_RMSE
values as shown in Fig. 3. The search for the optimal parameter
settings continues until the minimum value of MLA_RMSE is
found. The minimum value for MLA_RMSE was 0.1521 when
a = 0.02 and c = 0.74.

The RMSE and classification efficiencies obtained by using
different sizes of training data are shown in Figs. 4 and 5, which
indicate that the increase in training data size can improve pre-
diction accuracy but increase the computation time. However,
further accuracy improvement is not obvious when the size of
training data is greater than 800.

In order to decrease the computation complexity and improve
the accuracy of estimation, we selected 800 samples as the
training data size to obtain the optimal parameter settings,
and these parameter settings (a = 0.02 and c = 0.74) were

Fig. 4. Influence of training data size on the estimation accuracy of MLA
(simulated data).

Fig. 5. Influence of training data size on the computation time of MLA
(simulated data).

then used in classifying the simulated data using MLA. The
class proportions were produced by this model [Fig. 6(b)].
Meanwhile, RMSE values of the test data were calculated. As
shown in Table I, the values of the RMSE for urban, forest,
water, agriculture, and developing land are 0.0321, 0.0206,
0.0319, 0.0498, and 0.0177, respectively, indicating a very
satisfactory classification accuracy for this MLA model. As
shown in Fig. 6(c), the absolute residual value for a different
land-use class appears to be black in tone as a whole, and
the highest absolute residual does not exceed 0.2. The results
indicate that the MLA model is highly capable of classifying
simulated data in a noise-free environment.

The following experiment is designed to compare the sen-
sitivity of the analysis results to the amount of noise present
in the data. Different amounts of Gaussian white noise are
added to the simulated image by using Matlab 7.1. The added
noise is measured by the signal-to-noise ratio (often written as
S/N or SNR). SNR is a measure of signal strength relative
to background noise, expressed in decibels, and is defined as
follows:

SNR = 10 log10

Var(image)
Var(noise)

(9)
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Fig. 6. Class proportion images and absolute residual for different land-use classes by using the MLA model (simulated data).

TABLE I
RMSE VALUES OF EACH LAND-USE CLASS USING NI-MLA AND RD-MLA (SIMULATED DATA)

TABLE II
RMSE VALUES OF EACH LAND-USE CLASS IN DIFFERENT AMOUNTS OF NOISE ENVIRONMENT

In this experiment, the SNR is varied between 30 dB (slightly
noisy) and 0 dB (extremely noisy). Estimation accuracies are
shown in Table II, which shows that the increase in noise

amount will decrease analysis accuracy. As shown in Table II,
the values of MLA_RMSE for five SNR (30, 20, 10, 5, and 0)
are 0.2152, 0.3358, 0.6077, 0.8745, and 1.4822, respectively,
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Fig. 7. TM images (5, 4, 3) and QuickBird image in the study area.

Fig. 8. MLA_RMSE values obtained using different combinations of parame-
ters (a, c) settings (TM image).

which indicates that the MLA model is capable of analyzing
mixed-label data in different noise environment.

To establish a benchmark for the evaluation of the proposed
NI-based MLA (NI-MLA) model, we compared it with the
RD-based [refer to (5)] MLA (RD-MLA) model. As shown
in Table I, the MLA_RMSE value of NI-MLA is smaller than
that of RD-MLA. Therefore, this NI-MLA model shows higher
analysis accuracy than the RD-MLA model.

B. Actual Data From Remote-Sensing Images

A satellite Landsat Thematic Mapper (TM) image of
Dongguan in the Pearl River Delta acquired on July 18, 2003,
was used to produce a land-use classification. The study area
consists of 296× 299 pixels, with a ground resolution of 30 m
[Fig. 7(a)]. This area encompasses a diverse environment,
which is dominated by the following six land-use types: res-
idential, forest, water, cropland, grass, and developing land.
A QuickBird image of 0.61-m resolution in 2003 is used as
reference data for the creation of training and testing data sets
[Fig. 7(b)]. Because of the high resolution, each pixel in the
image was assumed to be pure in terms of land-use classes. A
total of 3000 samples were randomly selected from TM images,
wherein 1937 had unique class labels and 1063 were mixed
pixels. Then, class proportions within these samples were
generated based on the visual interpretation of this QuickBird
image and field investigation on the ground. A pixel of Landsat
TM images corresponds to about 49× 49 pixels of QuickBird

Fig. 9. Influence of training data size on the estimation accuracy of MLA
(TM image).

Fig. 10. Relationship between the number of k and estimation accuracy.

Fig. 11. Class proportion images for different land-use classes by using the
MLA model (TM image).

images, so it is possible to acquire actual class proportions in
each pixel of the TM image. These actual class proportions
are used as reference data for training data and testing data
collection. Samples for the training set are randomly chosen,
and the size of the training data ranges from 100 to 800, with
increments of 100. A total of 1800 samples were randomly
selected as the testing data.

Compared with the simulated data, TM images were much
more complicated in terms of land-use patterns and noise dis-
tribution. Based on the training set, the greedy search approach
was used to determine the parameter settings (a, c) in this MLA
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TABLE III
RMSE VALUES OF EACH LAND-USE CLASS USING MLA AND LSMM (TM IMAGE)

model. Parameters a and c were both assigned a value from 0
to 1, with increments of 0.01. The user of the k-NN technique
has to decide the number of nearest neighbors retrieved; five
neighbors are selected in the search procedure. Fig. 8 shows the
MLA_RMSE values obtained using the different combinations
of a and c values with the 600-sample training data. The
minimum value for MLA_RMSE was 0.8257 when a = 0.01
and c = 0.67.

As shown in Fig. 9, the larger the size of the training data is,
the higher the accuracy of estimation becomes. However, there
are slight differences in estimation accuracy when the training
data size is greater than 600. Therefore, a total of 600 samples
were selected as the data set size to obtain the optimal parameter
settings.

Another parameter is the number of retrieved neighbors (k).
Experiments were carried out to test the influences of various
k values on the estimated results. Training sets of 600 samples
were used to examine the relationships. The experiments indi-
cate that the increase in k values can improve the prediction ac-
curacy but significantly increase the computation time. Fig. 10
shows the relationship between the number of k and prediction
accuracy based on the training data. The MLA_RMSE is 0.979
(k = 1), 0.8257 (k = 5), 0.8361(k = 5), and 0.8460 (k = 20),
respectively. It is obvious that the estimation accuracy becomes
stabilized after k becomes greater than five. Therefore, five
neighbors are used to avoid too much computation time.

An experiment is designed to show the classification results
of MLA when the training set contains only pure pixels. This
experiment used 600 pixels for training, which are all pure. The
value of MLA_RMSE for this pure training data is 0.8771. The
results demonstrate that the MLA model trained with examples
of mixtures can have better estimation accuracy than pure
training data.

These parameters (a = 0.01, c = 0.67, and k = 5) can yield
the highest accuracy in classifying TM images. Therefore, these
optimal parameter settings were used to classify the TM image.
The class proportions were obtained by using this MLA model
(Fig. 11). As can be found through a comparison between
Figs. 7 and 11, this MLA model is capable of effectively sepa-
rating various land-use classes and obtaining class proportions.
The RMSE for the testing set is shown in Table III. Compar-
ison between Tables I and III indicates that the classification
accuracy of TM data is lower than that of the simulated data.
This is mainly because the TM image data are subject to
noise and a high spectral correlation between different land-
use classes. However, the overall results of classifying TM data
by this MLA model are satisfactory in terms of accuracies.
Higher classification accuracies can be achieved for the land
classes of water, forest, grass, and developing land. However,
the classification accuracies for urban and agricultural classes
are lower than those of other classes.

Fig. 12. Class proportions in the local enlargement area of Dongguan.

An enlarged part of the study area is shown in Fig. 12.
This part consists of a quite diverse land-use types such as
residential, forest, water, cropland, grass, and developing land.
Visually comparing remote-sensing images [Fig. 12(b) and (c)]
with fraction images can yield some interesting results. There
are obvious changes in grayscale in the interclass transition
zones. This indicates the area dominated by a large number of
mixed pixels.

A further experiment is to compare the performances of
this proposed model with those of the LSMM. LSMM has
been widely used as a technique in analyzing the mixture of
components in remotely sensed images [29], [30]. This method
applies a linear model to estimate the abundance fractions of
spectral signatures within mixed pixels [31]. Many endmember
extraction algorithms have been developed to find endmem-
bers, such as pixel purity index (PPI) [32], N-finder algorithm
[33], iterative error analysis [34], minimum volume transform
[35], convex cone analysis [36], and vertex component analysis
[37]. In this paper, image endmembers are extracted by inte-
grating QuickBird image and PPI, and pure pixels are selected
manually by visualizing the PPI results in an N-dimensional
visualizer and QuickBird image. Fig. 13 shows the class pro-
portions by using the LSMM model. By comparing Fig. 13 with
Fig. 12, we can find that the performance of this LSMM method
is very poor in analyzing forest, grass, and cropland. The
RMSE of these land-use classes are 0.2074, 0.2669, and 0.3177,
respectively, (Table III), which were significantly worse than
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Fig. 13. Class proportion images obtained by using LSMM.

those produced by the MLA methods. This is because of the
heterogeneous spectral signatures for the TM data. However,
LSMM and MLA were both successful in identifying water,
urban, and developing land classes.

Although soft classification (with proportions for each class
within a pixel) can be generated, a hardening process is some-
times required to obtain final crisp assignments to each class
(with only one single land class for a pixel) in applications
[38]. This is done by applying appropriate ranking procedures
and decision rules based on the inherent uncertainty and total
amount of information dormant within the data. The hardening
rule in this paper is represented as follows:

class(i)← arg max (pc(i)) (12)

where pc(i) is the proportion of the cth land use.
Classification results by hardening the soft outputs from

MLA are shown in Fig. 14(a). The hardening results from
this MLA method are compared with those from the artificial
neural networks (ANN), the maximum likelihood (ML), and
the minimum distance method. The classification results of
these approaches are shown in Fig. 14(b)–(d), respectively. As
shown in Fig. 14, MLA achieved the most satisfactory results
since each land-use class can be effectively identified. ANN
also yields good classification results for most classes but gives
unsatisfactory or even incorrect results for the classification
of grass and forest (listed in red frame). The ML approach
magnifies the area of the developing land and misidentifies a
road as a water object [Fig. 14(c)]. As shown in Fig. 14(d), the
minimum distance method exhibits the worst performance in
the classification of grass, cropland, urban, and developing land
(listed in red frame).

An error matrix is used to calculate the overall accuracy
of the hard classification. Using an error matrix to represent
accuracy has been adopted by many researchers as it provides
a detailed assessment of the agreement between the sample
reference data and classification data at specific locations [38].
As shown in Table IV, the overall accuracy is 91.6% when
using this MLA model. All land-use classes in the study area
have been identified successfully. In contrast, ANN, ML, and
the minimum distance classifiers have obtained lower overall
accuracies. However, the overall accuracy has a bias because

Fig. 14. Land-use classification in the study area of Dongguan.

of the difference between the actual and chance agreements,
which can be effectively explained with the kappa coefficient
[5]. As a result, more meaningful results will be yielded by
using the kappa coefficient in assessing remote-sensing classi-
fication. The kappa coefficients of MLA, ANN, ML, and mini-
mum distance are 0.903, 0.867, 0.832, and 0.816, respectively,
(Table IV). This reveals that MLA is better than the other three
traditional methods for land-cover classification.

IV. CONCLUSION

Remote sensing is attractive in creating land-cover maps.
However, when there are uncertainties in the form of mixed
pixels in remote-sensing images, application of conventional
“hard” classification methods to images dominated with mixed
pixels may be very inappropriate and erroneous. In order to
avoid this mixed-pixel problem, this paper has presented a new
approach to improve the classification performance of remote-
sensing applications based on MLA. Being distinct from con-
ventional classification approaches, this MLA model allows the
creation of partial and multiple class memberships for mixed
pixels and can calculate class proportions within a pixel so as
to produce soft classification from remote-sensing data.

This MLA model is established by using a nonparametric
regression algorithm, which is the k-NN. An NI approach is
proposed to calculate the weights of k-NNs, using a greedy
search strategy to search the optimal parameter settings for
MLA. This model does not make any rigid assumption about
the data, which relies on the data to determine a relationship
between the input and output class proportions. In this paper, we
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TABLE IV
COMPARISON OF THE CLASSIFICATIONS OBTAINED FROM MLA, NEURAL NETWORK, ML, AND MINIMUM DISTANCE

have applied MLA to the soft classification of remote-sensing
data. The results show that MLA is effective in inducing class
proportions. MLA proves to be simple, flexible, and feasible
and does not rely on the assumption regarding the relationship
between spectral information and class proportions. The results
of the classifications from a simulated image and a Landsat
TM image clearly show that MLA produces a considerably
higher accuracy of soft classification as compared with the
conventional LSMM method. Therefore, MLA is a potentially
useful approach in producing meaningful soft classifications
from remote-sensing data.

The dominant class in a pixel is hardened by using MLA.
MLA has an overall accuracy of 91.6% and a kappa coefficient
of 0.903. ANN, ML, and the minimum distance methods have
an overall accuracy of 88.7%, 85.3%, and 83.7% and a kappa
coefficient of 0.867, 0.832, and 0.816, respectively. Therefore,
this MLA model shows a higher classification accuracy than the
other three approaches.

Compared with LSMM, MLA demonstrates some advan-
tages. They mainly include the following: 1) MLA shows a
higher classification accuracy than LSMM; 2) LSMM requires
a priori knowledge of the signatures of endmembers present
in images, which is generally not available [39]; 3) LSMM is
based on an unattainable assumption that the class mixing is
performed in a linear manner. However, MLA does not make
any rigid assumption about the data [23]; 4) Moreover, LSMM
cannot satisfy the requirement that each class proportion in
the analysis result is within the range (0–1), while MLA can
meet this requirement; and 5) Finally, LSMM assumption limits
the number of primitive classes c, which can be identified
by c ≤ n + 1, where n is the number of measured spectral
bands [40].

There are still some limitations in using this method in
classifying remote-sensing data. First, the quality of the train-
ing data set used is a major determinant of the classification
accuracy of MLA. These training sets are mainly obtained
through visual interpretation of high-resolution satellite images
or collection of ground data, which will spend considerable
time and resources. In future researches, it is hoped that
we can use small training sets for soft image classification
by using semisupervised classification techniques. Lastly, the
greedy search strategy is used to optimize parameter settings
in this paper, while this approach takes a long time to achieve
the optimization progress. Future work should be focused on
searching the optimal parameter settings in a much shorter time
by using artificial intelligence methods.

REFERENCES
[1] G. G. Wilkinson, “Results and implications of a study of fifteen years of

satellite image classification experiments,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 3, pp. 433–440, Mar. 2005.

[2] S. Di Zenzo, R. Bernstein, S. D. Degloria, and H. G. Kolsky, “Gaussian
maximum likelihood and contextual classification algorithms for multi-
crop classification,” IEEE Trans. Geosci. Remote Sens., vol. GRS-25,
no. 6, pp. 805–814, Nov. 1987.

[3] K. Muthu and M. Petrou, “Landslide-hazard mapping using an expert
system and a GIS,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2,
pp. 522–531, Feb. 2007.

[4] F. Del Frate, F. Pacifici, G. Schiavon, and C. Solimini, “Use of neural
networks for automatic classification from high-resolution images,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 800–809, Apr. 2007.

[5] X. P. Liu, X. Li, and L. Liu, “An innovative method to classify remote-
sensing images using ant colony optimization,” IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 12, pp. 4198–4208, Dec. 2008.

[6] G. M. Foody, “Fully fuzzy supervised classification of land cover from re-
motely sensed imagery with an artificial neural network,” Neural Comput.
Appl., vol. 5, no. 4, pp. 238–247, Dec. 1997.

[7] G. M. Foody, “Hard and soft classifications by a neural network with a
non-exhaustively defined set of classes,” Int. J. Remote Sens., vol. 23,
no. 18, pp. 3853–3864, Sep. 2002.

[8] J. B. Campbell, Introduction to Remote Sensing. New York: Guilford
Press, 1987.

[9] T. F. Wood and G. M. Foody, “Using cover-type likelihoods and typical-
ities in a geographic information system data structure to map gradually
changing environments,” in In Landscape Ecology and GIS, R. Haines-
Young, D. R. Green, and S. H. Cousins, Eds. London, U.K.: Taylor &
Francis, 1993, pp. 141–146.

[10] J. B. Campbell, Introduction to Remote Sensing., 3rd ed. New York:
Guilford Press, 2002.

[11] A. C. Bernard, G. G. Wilkinson, and I. Kanellopoulos, “Training strategies
for neural network soft classification of remotely-sensed imagery,” Int. J.
Remote Sens., vol. 18, no. 8, pp. 1851–1856, May 1997.

[12] M. A. Ibrahim, M. K. Arora, and S. K. Ghosh, “Estimating and accommo-
dating uncertainty through the soft classification of remote sensing data,”
Int. J. Remote Sens., vol. 26, no. 14, pp. 2995–3007, Jul. 2005.

[13] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and com-
parative analysis of endmember extraction algorithms from hyperspectral
data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650–663,
Mar. 2004.

[14] C.-I Chang and B. Ji, “Weighted abundance-constrained linear spectral
mixture analysis,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2,
pp. 378–388, Feb. 2006.

[15] D. Lu and Q. Weng, “Use of impervious surface in urban land-use
classification,” Remote Sens. Environ., vol. 102, no. 1/2, pp. 146–160,
May 2006.

[16] M. Xu, P. Watanachaturaporn, P. K. Varshney, and M. K. Arora, “Decision
tree regression for soft classification of remote sensing data,” Remote
Sens. Environ., vol. 97, no. 3, pp. 322–336, Aug. 2005.

[17] G. M. Foody and A. Mathur, “The use of small training sets containing
mixed pixels for accurate hard image classification: Training on mixed
spectral responses for classification by a SVM,” Remote Sens. Environ.,
vol. 103, no. 2, pp. 179–189, Jul. 2006.

[18] G. M. Foody, “Estimation of sub-pixel land cover composition in the
presence of untrained classes,” Comput. Geosci., vol. 26, no. 4, pp. 469–
478, May 2000.

[19] J. Lein, “Toward the rapid characterization of the built environment
within the wildland-urban interface: A soft classification strategy,” GISci.
Remote Sens., vol. 43, no. 1, pp. 44–61, Apr.–Jun. 2006.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2010 at 08:12:29 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: DETERMINING CLASS PROPORTIONS WITHIN A PIXEL 1891

[20] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern Recognit., vol. 37, no. 9, pp. 1757–1771,
Sep. 2004.

[21] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with applica-
tions to functional genomics and text categorization,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 10, pp. 1338–1351, Oct. 2006.

[22] R. L. Kennedy, L. Yuchun, V. R. Benjamin, C. D. Reed, and
R. P. Lippmann, Solving Data Mining Problems Through Pattern Recog-
nition. Englewood Cliffs, NJ: Prentice-Hall, 1998.

[23] R. K. Oswald, W. T. Scherer, and B. L. Smith, “Traffic flow forecasting
using approximate nearest neighbor nonparametric regression,” Research
Project Rep. for ITS Implementation Research 2000, Apr. 25, 2002.
[Online]. Available: http://www.gmupolicy.net/its/papers.htm

[24] A. Nemes, W. J. Rawls, and Y. A. Pachepsky, “Use of a nonparametric
nearest neighbor approach to estimate soil hydraulic properties,” SSSA J.,
vol. 70, no. 2, pp. 327–336, 2006.

[25] U. Lall and A. Sharma, “A nearest-neighbor bootstrap for resampling
hydrologic time series,” Water Resour. Res., vol. 32, no. 3, pp. 679–693,
1996.

[26] F. Maselli, A. Rodolf, and C. Conese, “Fuzzy classification of spatially de-
graded thematic mapper data for the estimation of sub-pixel components,”
Int. J. Remote Sens., vol. 17, no. 3, pp. 537–551, Feb. 1996.

[27] F. Okeke and A. Karnieli, “Linear mixture model approach for selecting
fuzzy exponent value in fuzzy c-means algorithm,” Ecol. Inf., vol. 1, no. 1,
pp. 117–124, Jan. 1996.

[28] R. G. Congalton, “A review of assessing the accuracy of classifications of
remotely sensed data,” Remote Sens. Environ., vol. 37, pp. 35–46, 1991.

[29] C. Small, “The Landsat ETM+ spectral mixing space,” Remote Sens.
Environ., vol. 93, no. 1/2, pp. 1–17, Oct. 2004.

[30] Q. H. Weng and X. F. Xu, “Medium spatial resolution satellite imagery
for estimating and mapping urban impervious surfaces using LSMA and
ANN,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2397–2406,
Aug. 2008.

[31] Q. Du and C.-I Chang, “Linear mixture analysis-based compression for
hyperspectral image analysis,” IEEE Trans. Geosci. Remote Sens., vol. 42,
no. 4, pp. 875–891, Apr. 2004.

[32] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures
via partial unmixing of AVIRIS data,” in Proc. Summit JPL Airborne
Earth Sci. Workshop, Pasadena, CA, 1995, pp. 23–26.

[33] M. E. Winter, “N-finder: An algorithm for fast autonomous spectral end-
member determination in hyperspectral data,” in Proc. Image Spectrom.
V , 1999, vol. 3753, pp. 266–277.

[34] R. A. Neville, K. Staenz, T. Szeredi, J. Lefebvre, and P. Hauff, “Automatic
endmember extraction from hyperspectral data for mineral exploration,”
in Proc. 4th Int. Airborne Remote Sens. Conf. Exhib., 1999, pp. 21–24.

[35] M. D. Craig, “Minimum-volume transforms for remotely sensed data,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994.

[36] A. Ifarraguerri and C.-I Chang, “Hyperspectral image segmentation with
convex cones,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756–
770, Mar. 1999.

[37] J. M. P. Nascimento and J. M. Dias, “Vertex component analysis: A fast
algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[38] E. Binaghi, P. A. Brivio, P. Ghezzi, and A. Rampini, “A fuzzy set based ac-
curacy assessment of soft classification,” Pattern Recognit. Lett., vol. 20,
no. 9, pp. 935–948, Sep. 1999.

[39] D. C. Heinz and C.-I Chang, “Fully constrained least squares linear spec-
tral mixture analysis method for material quantification in hyperspectral
imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545,
Mar. 2001.

[40] M. Brown, H. G. Lewis, and S. R. Gunn, “Linear spectral mixture models
and support vector machines for remote sensing,” IEEE Trans. Geosci.
Remote Sens., vol. 38, no. 5, pp. 2346–2360, Sep. 2000.

Xiaoping Liu received the B.S. degree in geogra-
phy and the Ph.D. degree in remote sensing and
geographical information sciences from Sun Yat-sen
University, Guangzhou, China, in 2002 and 2008,
respectively.

He is an Associate Professor with the School
of Geography and Planning, Sun Yat-sen Univer-
sity. His current research interests include image
processing, artificial intelligence, and geographical
simulation.

Xia Li received the B.S. and M.S. degrees from
Peking University, Beijing, China, and the Ph.D.
degree in geographical information sciences from the
University of Hong Kong, Hong Kong.

He is a Professor and the Director of the Centre
for Remote Sensing and Geographical Information
Sciences, School of Geography and Planning, Sun
Yat-sen University, Guangzhou, China. He is also
a Guest Professor with the Department of Geogra-
phy, University of Cincinnati, Cincinnati, OH. He
is on the editorial board of the international journal

Geojournal and is the Associated Editor of the Chinese journal Tropical
Geography. He is the author of about 200 articles, of which many appeared
in international journals. His papers are widely published in top international
GIS and remote sensing journals, such as Remote Sensing of Environment,
International Journal of Remote Sensing, Photogrammetric Engineering &
Remote Sensing, International Journal of Geographical Information Science,
Environment and Planning A, and Environment and Planning B. His major
research interests include remote sensing, geographical information systems
for environmental modeling and land use planning, simulation of urban growth
and land use changes with cellular automata and GIS, radar remote sensing for
urban applications, and land use changes and agricultural land loss in the Pearl
River Delta.

Dr. Li received the ChangJiang scholarship and the award of the Distin-
guished Youth Fund of the National Science Foundation of China in 2005.

Xiaohu Zhang received the B.S. degree in geograph-
ical information sciences from Sun Yat-sen Univer-
sity, Guangzhou, China, in 2008. He is currently
working toward the Master’s degree with the Univer-
sity of Hong Kong, Hong Kong.

His main research areas include image processing
and artificial intelligence.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on April 10,2010 at 08:12:29 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


